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Analysis of Filtration Characteristics for Compressible
Polycrystalline Particles by Partial Least Squares Regression
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Jens-Petter Andreassen1
1Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU),
Trondheim, Norway
2POSTEC, Tel-Tek, Porsgrunn, Norway
3Department of Chemical Technology, Lappeenranta University of Technology (LUT),
Lappeenranta, Finland

Crystal size and morphology have been varied by changing the
initial supersaturation ratio and the temperature in reactive crystalli-
zation experiments. The influence of the chord length distribution,
average cake porosity, and filtration pressure difference on the
average cake resistance of polycrystalline particles of an industrially
produced aromatic amine has been investigated by means of partial
least squares (PLS) regression and sensitivity analysis. Analysis of
the results has disclosed that wider chord length distributions as well
as lower values of the measured average porosity lead to higher values
for the average cake resistance. However, PLS regression and sensi-
tivity analysis have identified the applied pressure difference itself as
the most significant parameter influencing the magnitude of the cake
resistance. This unexpected behavior is accounted for by compression
of the filter cake occurring predominantly in small layers above the
filter cloth characteristic for highly compressible cakes.

Keywords constant pressure cake filtration; crystallization;
FBRM chord length distribution; partial least squares
regression; sensitivity analysis

INTRODUCTION

Filtration of crystalline material, as well as crystal hand-
ling in other down-stream processes like washing, drying,
powder transport, and powder storage is influenced by
characteristic properties displayed by the crystals. Crystal
properties like morphology, size, surface structure, and
hardness are controlled by crystallization parameters such
as the type of substance used, supersaturation (chemical
potential), temperature, mixing, crystallization time, pH,
solvent composition, and type and amount of seed crystals.
The crystallization conditions influence the nucleation,
growth, aggregation and the breakage of the crystals (1).

Variation in the crystal properties by the applied crystal-
lization conditions will affect the subsequent filtration
process (2), which can be characterized by the specific aver-
age cake resistance. The ideal filtration theory assumes the
feed suspension to consist of a constant concentration of
spherical particles of the same size. The cake is assumed
to build up without rearrangement and breakage of the
particles in the cake and the supposed laminar filtrate flow
is proportional to the cake build-up. In practice, however,
suspensions are composed of non-spherical particles
exhibiting a variation in size and shape. This has led to
concepts that are based on the Sauter mean diameter of
the distribution of particles with shape factors correcting
for the deviation from spherical shapes (3,4). The filtration
cake resistance is lower for larger particles (lower specific
surface area) as well as for cakes exhibiting higher porosity
(5). The relation between the filter cake resistance and the
size is derived by Carman (6–8) from Kozeny’s work (9).
Leave aside the size distribution of particles, real filtration
processes are also deviating from ideal conditions in other
aspects. Filter cakes are usually compressible, at least to
some extent, resulting in the interdependence between the
applied pressure difference, porosity and cake resistance
(10,11). In literature, other parameters than the applied
pressure are reported to influence the cake resistance. For
example, Rushton et al. (12) found that both the flow
velocity and the solids concentration affect the measured
cake resistance values. Cake structures were observed to
be more open in experiments performed at higher velocities
leading to lower average cake resistance values. Above a
certain limit, the cake was also found to be more open
structured at higher levels of solids concentration. As a
result of the numerous parameters influencing the cake
resistance, Häkkinen et al. (13) use multilinear partial least
squares regression (N-PLS) as a tool to predict average
specific cake resistance values, cake porosity, and cake
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compressibility of sulfathiazole crystal suspensions. The
model is based on shape and size data obtained from image
analyser measurements as well as on the density and the
viscosity of the solvents used. Multivariate data analysis
has been proved to be a successful tool in various areas
like research and development, process optimization and
control, quality control and market research. As an
example, Liotta and Sabesan (14) use the method of partial
least squares (PLS) regression to predict solute concen-
tration values of an active pharmaceutical ingredient based
on infrared (ATR, attenuated total reflectance) spectra to
be able to control the supersaturation level and thereby
the crystal size throughout the crystallization experiment.
PLS regression allows for the prediction of dependent
variables based on latent variables calculated from a large
number of variables as compared to observations, thus
allowing for data compression (15). In PLS regression a
number of factors are calculated and optimized for
maximum explanation of the variance in the y-variables.
The concentration (dependent variable) can be calculated
from the large number of absorbance values associated
to certain wave lengths of the used IR radiation (14).
Togkalidou et al. (16) have previously studied different
multivariate methods like partial least squares regression,
principal component regression, top-down regression, and
confidence interval regression to relate the chord length
distributions of crystal suspensions measured by focused
beam reflectance measurements (FBRM) to the measured
average cake resistance values. Sensitivity analysis is
concerned with how the results of estimations from PLS
depend on the data set. There are two approaches to sensi-
tivity analysis, one is to consider the influence of the sam-
ples and the other concerns the influence of the variables
(17). The latter approach is applied in the present work.

Polycrystalline particles with a roughly spherical shape
have been identified in the industrial production of an
aromatic amine derivative, where filtration is considered
to be the major bottle neck. We have previously shown that
these particles are produced by a spherulitic growth mech-
anism (18). In the present work variations in chord length
distributions obtained by FBRM (19), porosity and applied
filtration pressure difference were evaluated for their effect
on the average cake resistance by means of partial least
squares regression and sensitivity analysis, in order to
shed light on the filtration problems encountered in the
industrial production of aromatic amine spherulites.

EXPERIMENTAL

Crystallization Experiments

The initial supersaturation ratio S and temperature
T were varied in reactive crystallization experiments
performed in a 2 l batch (18) reactor at 500 rpm stirring
speed within 2 hours crystallization time after nucleation

to produce crystals of different size and morphology. The
initial supersaturation ratio S, was calculated as the ratio
of the weight fraction of dissolved substance before the
onset of nucleation to the solubility weight fraction c�:

S ¼ c

c�
ð1Þ

The initial supersaturation ratio was varied in the range
from S¼ 2 to S¼ 8 and experiments were performed
between 5�C and 60�C.

Non-weighted chord length distributions were recorded
at the end of each experiment by means of FBRM (Mettler
Toledo, Lasentec D600L) operated in the fine resolution
mode at a scanning speed of 2m=s. The data were collected
in the fine resolution mode to capture the small particles
which might be of crucial importance for the filtration
performance (2,20). The crystal morphology was studied
by scanning electron microscopy (SEM, HITACHI,
S-3400N).

Filtration Experiments

Prior to the filtration experiments, the solids density qs
of the crystals was measured using a gas pycnometer
(Micromeretics, AccuPyc 1330). The Dynamic viscosity g
was determined by a capillary viscosimeter (Ubbelohde-
viscometer, Schott Instruments, 50103 0c). The 1 liter
thermostated pressure Nutsche filter with A¼ 20 cm2 filter
area (pocket leaf filter, BHS, TMG 400) was filled with
350ml suspension in each experiment. Polypropylene filters
(Tamfelt, PP 2101) were used as filter media. Filtrate
volume V, and filtration time t, were recorded by a data
collection program for batch filtration experiments
performed at constant pressure differences Dp of 2, 4,
and 6 bar. Altogether 49 filtration experiments were
performed. The effective solids concentration xesc was
calculated according to

xesc ¼
ql

1
smfs

� 1þ ql
qs

e
ð1�eÞ

� � ð2Þ

where ql and qs stand for the density of the liquid or the
solid, respectively and smfs represents the mass fraction of
solids in the feed. For better comparability of different
filtration experiments (21,13) the solids suspension concen-
tration was kept constant at approximately smfs¼ 0.09 by
removing clear filtrate. The average cake porosity e was
calculated by Eq. (3):

e ¼
Ah� ms

qs

Ah
ð3Þ

The cake height h as well as the mass of the dry
solids ms were measured after the filtration process. The
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average specific cake resistance a was calculated from
Eq. (4):

t

V
¼ a

gxecs
2A2Dp

V þ gb
ADp

ð4Þ

where g is the dynamic viscosity, Dp is the applied pressure
difference and b is the filter medium resistance.

Partial Least Squares Regression

PLS is performed on y-variables, expressed as a vector.
The models which relate the PLS model terms are given by
the following expressions:

X ¼ TPT þ E ð5Þ

Y ¼ UQT þ F ð6Þ

T and U are factor scores, P and Q are the loadings of
the x and y-variables and E and F are the residuals in X
and Y, respectively. Alternatively, Eq. (5) can be expressed
in the form:

X ¼ t1p
T
1 þ t2p

T
2 þ � � � þ tap

T
a þ � � � þ tAp

T
A þ E ð7Þ

where a¼A is equal to the maximum number of latent
variables included in the PLS-model for explanation of
variance in Y.

By scaling the variables, an unreasonable influence of
variables with dominating standard deviations, s(x), on
the model can be avoided. The weighting (w) of xi,k by
centering and scaling is performed according to the
following formula, where i is the observation number
and k is the number of the original variable:

xik;w ¼ xik � �xxk
sðxkÞ

ð8Þ

Recorded chord length distributions (1–1000 mm) were
divided into 45 log channels and the 7 channels with the
highest chord length values were left out due to statistical
insignificance. Thus, the percentage of chords between
1 mm and 317 mm from 38 channels, the pressure difference
and the measured average cake porosity were chosen as
independent variables x to perform PLS-regression to
explain the effect on the y-variables, the measured average
specific cake resistance values, a or log(a). All 49 performed
filtration experiments were included into the model as one
sample set, giving a matrix composed of 40 x-variables (col-
umns) and 49 samples (rows). The commercial software
Unscrambler (CAMO, version 9.7) was used to perform
the PLS-regression analysis. The observation X-matrix
consists of observation of the following groups of variables
or sub matrices: xDpjXchord length distrjxe

� �
.

Validation

Validation means to determine the number of PLS-
components or latent variables that give the prediction
of y from X in future objects that lack the value of the y-
variable. Cross validation was performed in this work.
The calibration set was split into ten segments, and the vali-
dation was repeated ten times, each time treating one-tenth
of the calibration set as prediction objects. The cross-
validated residual variance in y after inclusion of A latent
variables is as follows:

VarðyÞval;n ¼
1

Ipr

XIpr
i¼1

ðŷyi � yiÞ2 ð9Þ

where Ipr is equal to the number of validation objects,
which is equal to the number of calibration objects, ŷi
is the predicted value and yi the respective observed value.

Sensitivity Analysis

Sensitivity analysis was used to evaluate the influence
of the chord length distribution data, the applied pressure
difference and the porosity on the cake resistance.

Sensitivity analysis based on a PLS model performed
with centered and scaled data allows for the evaluation
of how the x-variables affect the chosen y-variables in
different ways:

1. Comparison of the regression coefficients of the various
variables from PLS with centered and scaled data.

2. Significance testing on the coefficients by application of
Jack-knifing estimation (22).

3. Prediction of variation in y from variation of one
x-variable in equal steps in one direction while the
others are kept constant and equal to their respective
mean values.

An influence of one or several x-variables on a y-
variable is defined in this work as being significant if there
is no overlap of confidence intervals of the predicted
maximum and minimum y-values. The significance of the
influence of a variable xk is evaluated by Jackknifing
estimation. This influence is defined significant if the uncer-
tainty level is less than 2jbwkj, where bwk is the regression
coefficient.

The type of sensitivity analysis to be applied for examin-
ing the influence of x on y depends much on the type of
modeling applied. In multivariate data analysis as for
example PLS y is correlated to the latent variables
which are linear combinations of the x-variables. In (23)
and (24) variation in y is predicted from a simulated
variation of a latent variable. The latent variable may be
a combination of several.

From the PLS-model on centered and scaled data the
influence of x-variables on the y-variable(s) is evaluated
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by prediction of variation in y from variation of one
latent variable at a time from one ‘‘observed’’ extreme to
the other. By varying the A’th latent variable D t pa the
variation in Dxk in its original form, i.e., not scaled, can
be calculated in the following way:

Dxk ¼ ðDt pkaÞ sðxkÞ ð10Þ

Similar to a type of sensitivity analysis with variation of
only one x-variable, the score, t, is varied in one direction
and in equal steps, Dt. Calculation of xk, neither centered
nor scaled, will then be as follows:

xk ¼ ðt pkaÞsðxkÞ þ �xxk ð11Þ

Usually, variation in the whole observation X-matrix was
simulated prior to the prediction by constructing an artificial
observation X-matrices. In some cases sensitivity analysis
in the form of prediction from a simulated variation of a
selection or a group of variables could be appropriate.

Optimization

The optimization based on the PLS-model is in the form
of a linear program, where the constraints describing the
influence of one variable on the others are given by one
original PLS component or one equal a combination of
several (25,26). Having a model y ¼ b0 þ

PK
k¼1 bkxk from

PLS on mean-centered and scaled data, using weights based
on the standard deviation and selecting the latent variable
no. a to constrain the variation in X then mathematically,
the linear programming problem is presented as follows:

Minimize or Maximize

y ¼
XK
k¼1

bkxk or y ¼ xTb ð12Þ

subject to

A1x ¼ c1; A2x � c2; A2x � c3 and x � 0

where

A1¼
�pka sðxkÞ ��� 0 p1a sðx1Þ 0 ... 0

..

. . .
. ..

. ..
. ..

. . .
. ..

.

0 ... �pka sðxkÞ pk�1a sðxk�1Þ 0 ... 0

0 ... 0 pkþ1a sðxkþ1Þ �pka sðxkÞ ... 0

..

. . .
. ..

. ..
. ..

. . .
. ..

.

0 ��� 0 pKa sðxKÞ 0 ... �pkasðxkÞ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

A2 ¼
1 � � � 0
..
. . .

. ..
.

0 � � � 1

0
@

1
A

c1 ¼

�xxk p1a sðx1Þ � �xx1 pka sðxkÞ
..
.

�xxk pk�1a sðxk�1Þ � �xxk�1 pka sðxkÞ
�xxk pkþ1a sðxkþ1Þ � �xxkþ1 pka sðxkÞ

..

.

�xxk pKa sðxKÞ � �xxK pka sðxkÞ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

c2 ¼

x1 upper lim it

..

.

xK upper lim it

0
BB@

1
CCA

c3 ¼
x1 lower lim it

..

.

xK lower lim it

0
BB@

1
CCA

�xxk, s(xk), and pka are the mean value, standard deviation,
and the loading of xk, respectively. The constant b0 is not
included in the optimization but is added afterwards. xk
is selected to influence the other x-variables in the
constraints if jpka s(xk)j is of max value for k¼ 1, 2, . . . , K.

In order to achieve the most optimal solution, several
PLS-components were involved in optimization. The
‘‘loadings’’ in the new constraints are linear combinations
of the original ones and are expressed as follows:

pcombination of several PLS�components ¼
XA
a¼1

napa ð13Þ

where
PA

a¼1 na ¼ 1 and 0< na< 1.
The latter constraint prevents absolute values of the

scores, jtj, of optimal x¼ (x1 x2 . . . xK) to be unreasonable
high.

The stepwise optimization was in this case carried out,
by stepwise changes of some or all n1,. . ., nA before the next
optimization, until a maximum value of y was obtained, on
the condition that the constraints were consistent.

A useful method for optimizing a combination of several
latent variables is the simplex method (27). This is not to be
confused with the simplex methods of linear programming.

RESULTS AND DISCUSSION

Crystal Properties and Filtration Characteristics

A limited number of the resulting crystalline products
are presented to illustrate major differences in the crystal
size and morphology as a consequence of different

ANALYSIS OF FILTRATION CHARACTERISTICS FOR COMPRESSIBLE POLYCRYSTALLINE PARTICLES 1199

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



temperature and supersaturation in the crystallization
experiments. Crystals formed at 60�C at different initial
supersaturation ratios are depicted in Fig. 1, at an initial
supersaturation ratio of either 4 (Fig. 1a) or 6 (Fig. 1b).
At an initial supersaturation of S¼ 6, polycrystalline parti-
cles with a denser surface structure appear, while in experi-
ments performed at S¼ 4 the crystals exhibit a more open
surface structure and plate-like particles crystallize along
with the polycrystalline particles. The amount of plate-like
crystals was found to increase (18) in experiments per-
formed at a lower initial supersaturation, by nucleation
and growth from solution. Plate-like particles can also be
formed by transformation of the polycrystalline particles
or by attrition of the seemingly fragile spherulites in the
course of the crystallization process. Polycrystalline parti-
cles produced at 5�C are seemingly smaller (Fig. 2b) and
exhibit a more compact surface structure than spherulitic
crystals originating from experiments performed at 60�C
(Fig. 1b). The particles produced at 25�C (Fig. 2a) seem
to be intermediate to the particles produced at 5 and
60�C, at least with respect to the maximum particle size.
However, the results of the FBRM-measurements (Fig. 3)
reveal a different trend for these three different crystalliza-
tion conditions. SEM-pictures cannot be used to obtain
information about the particle size distribution due to
non-representative sampling in this case. The FBRM-
measurements on the other hand, were shown to be highly
reproducible. Spherulites obtained at T¼ 5�C and S¼ 8

(light grey spectrum in Fig. 3) exhibit a narrow chord
length distribution, with the lowest frequency of counts
for smaller chord lengths. Crystals (black spectrum in
Fig. 3) produced at 60�C at S¼ 6 lead to a relatively broad
chord length distribution, with a high frequency of smaller
chord lengths. The distribution at 25�C and S¼ 8 resulted
in a broad distribution with a surprisingly high frequency
of larger chord lengths when compared to the particle size
information from the SEM-picture of Fig. 2a.

At 2 bar filtration pressure difference, the measured aver-
age specific cake resistance value was found to be almost 9
times higher for experiments performed at 25�C and S¼ 8
(2.1 � 1010m=kg) than for experiments carried out at 5�C
and S¼ 8 (2.4 � 109m=kg), whereas the cake resistance was
intermediate for crystal suspensions originating from
experiments at 60�C and S¼ 6 (7.3 � 109m=kg).

The effect of the filtration pressure difference on the
measured cake resistance values is illustrated in Fig. 4 for
crystals produced at T¼ 60�C and S¼ 6. The measured
cake resistance values in this figure are fitted by means of
a power function.

The discrepancy in particle size observations from
the SEM-pictures of Fig. 1 and 2 and the chord length

FIG. 1. Crystals produced at 60�C and an initial supersaturation ratio of

(a) S¼ 4 and (b) S¼ 6. The whole scale bar is 200mm.

FIG. 2. Crystals obtained from experiments performed at a supersatura-

tion ratio of S¼ 8 at (a) 25�C and (b) 5�C.

FIG. 3. Measured counts of chords per second in relation to the total

number of measured counts per s divided into chord length intervals exem-

plified for crystals produced at T¼ 5�C and S¼ 8 (light grey), T¼ 25�C
and S¼ 8 (dark grey) and T¼ 60�C and S¼ 6 (black).

FIG. 4. The effect of the filtration pressure difference on the measured

cake resistance values for the filtration of crystals produced at T¼ 60�C
and S¼ 6.
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information in Fig. 3 motivated for a statistical analysis
that takes the whole distribution into account. The
additional large effect of pressure difference on the mea-
sured cake resistance made it obvious to include also this
variable in the analysis. The average porosity was also
included since it has an effect on the filter cake resistance.

Partial Least Squares Regression

PLS regression based on the 49 observations (filtration
experiments) yielded maximum explained variance (59%)
with 5 PLS-components incorporated into the model. The
predicted values for the average specific cake resistance
(a) values (predicted y) are plotted against the measured

cake resistance values (measured y) in Fig. 5. The plot in
Fig. 5 of predicted versus measured cake resistance shows
a lack of fit appearing as systematic tendencies. Therefore
another PLS model based on the logarithmic form of the
cake resistance (ln(a)) was built to examine the possibility
of achieving a plot which fits the target line (predicted
equal to measured values) in a better way (Fig. 6). As
can be seen when comparing Figs. 5 and 6 the new model
yields a better fit to the target line. The explained variance
increases from 59 to 86%. However, the latter model uses 9
PLS-components, but according to Fig. 7 the increase in
explained variance is marginal when using 9 components
instead of 5.

FIG. 5. Predicted versus measured values for the cake resistance a (y).

FIG. 6. Predicted versus measured values for the logarithmic form of the cake resistance a(ln(a)¼ y).
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Figure 8 shows the regression coefficients, bw, for predic-
tion of the logarithm of the filter cake resistance (ln(a))
from the variables presented in the experimental section.
The regression coefficient for the first variable x1 represents
the filtration pressure difference (Dp). Regression coeffi-
cients 2–39 (for x2�x39) characterize the 38 chord length
distribution channels and the 40th regression coefficient
(for x40) describes the average cake porosity (e).

The regression coefficients bw1, bw2, . . . , bwK are used in
the prediction model ln(a)¼ yw¼ b0wþ bw1x1,wþ bw2x2,w
þ . . .þ bwK xK,w for the prediction of the y-variable (ln(a))
in centred and scaled form. The elements in bw, contrary
to the respective elements in b used for prediction from
the x-variables in their original forms, i.e. neither centred
nor scaled, give the information about how much each
x-variable influences the cake resistance (ln(a)). Based on
the criterion of s(bw)< 2jbwkj (Jackknifing estimation)
Fig. 8 shows that the only x-variables which influence the
cake resistance significantly are x1: the pressure difference
and the number fractions of the chord length intervals
x16: 9.3� 10.2 mm x21: 20.0� 23.3 mm x27: 50.3� 68.3 mm
and x30: 79.7� 92.9 mm. The variable x40: the porosity of

the filter cake, has no significant influence on the cake
resistance according to the Jackknifing criterion. The con-
tribution of the x-variables to the first three latent variables
or PLS-components (equation the loadings of the x-
variables, pka) is presented in Fig. 9. The loadings confirm
the variation of x1: the pressure difference, independent of
the other variables and vice versa while x40: the porosity
of the filter cake correlates much with the chord length
distribution. This could explain the lack of significance of
the influence of porosity alone on the cake resistance.

Sensitivity Analysis

Sensitivity analysis of the obtained experimental data
shows that both the applied pressure difference (Fig. 10)
and the porosity (Fig. 11) influence the cake resistance
significantly. The influence of the pressure difference (x1),
however, is more significant. The cake resistance increases
with an increase in applied pressuredifference (x1) and
decreases with increasing porosity (x40). The dependencies
of the cake resistance on both the applied pressure differ-
ence and the porosity is in good agreement with basic

FIG. 7. Explained variances in the logarithm of the cake resistance

(ln(a)) versus the number of PLS –components included in the PLS-model.

FIG. 8. The respective regression coefficients, bw, for prediction of ln(a).

FIG. 9. Contribution of the x-variables to the first three latent variables

(PLS-components) selected by PLS to explain the cake resistance values.
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filtration theory (see. Introduction). To examine the
influence of the chord length distribution on (ln(a)), the
following simulation of X can be performed prior to
the prediction (24):

Xsimulated ¼ �xxDpjXchord length distr; simulatedj�xxe
� �

¼ �xxDpjtsimulated pa; from PLS of whole Xj�xxe
� �

for a¼ 1, . . . , A, where A is the number of PLS-components
for max explanation of y¼ ln(a). In this case pa ¼
ðp2a . . . pka . . . pK�1aÞ where A is the number of variables
included in PLS.

In Figs. 12, 14, 16, and 18 the variations in the chord
length distribution are simulated by varying one latent
variable or combinations of several latent variables. In
Figs. 13, 15, 17, and 19 variations in the cake resistance
are predicted from the simulated variations in the chord
length distributions presented in Figs. 12, 14, 16, and 18,
respectively. The variation was simulated by optimizing
the regression function constrained by the latent variables.
The ranges of variation of all xk were �xxk�1:5sðxkÞ unless
constrained by the latent variables.

The simulated chord length distributions based on vari-
ation in the first latent variable (Fig. 12) give a significant

FIG. 10. Predicted variation in the logarithm of the cake resistance (ln(a)) from a simulated variation in the pressure difference (x1) with the other

x-variables set constant and equal to their mean values.

FIG. 11. Predicted variation in the logarithm of the cake resistance (ln(a)¼ y) from a simulated variation in the porosity with the other x-variables set

constant and equal to their mean values.

ANALYSIS OF FILTRATION CHARACTERISTICS FOR COMPRESSIBLE POLYCRYSTALLINE PARTICLES 1203

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



response in the resulting cake resistance (Fig. 13). The same
is true for the simulation based on the second latent vari-
able (Figs. 14 and 15). This is in accordance with Fig. 9
which shows relatively high loadings for the x-values that
represent the chord length distribution. The response by
variation in the third PLS-component is moderate both
with respect to the simulated chord length distribution
(Fig. 16) and the resulting cake resistance (Fig. 17), which
can be explained by the fact that the third latent variable is
dominated by the pressure difference.

The simulations of chord length distributions presented
in Fig. 18 are based on an optimization of a combination of
the first four latent variables in order to minimize and max-
imize the resulting cake resistance. The resulting maximum
and minimum values of the cake resistance (ln(a)) is
presented in Fig. 19.

Sensitivity analysis and optimization performed on the
basis of the experimental data leads to the conclusion that
a broader chord length distribution with a larger percent-
age of smaller chord lengths coheres with a higher value
for the average cake resistance (Fig. 19).

Cake Compressibility

The important role of the compression of the filter
cake during filtration is illustrated by the significant
regression coefficient (Fig. 8) and loading (Fig. 9) for
the applied pressure difference during the filtration pro-
cess. The fact that the cake resistance is mainly affected
by the applied pressure difference with only minor depen-
dence on the average porosity requires a closer look on
the particle-particle and particle-liquid interactions within
the cake. Wakeman and Tarleton (10) illustrate that the
total applied pressure is partly converted into the solids
compressible pressure acting on the particles within the
cake, depending on the examined cake height. The solids
compressible pressure in turn leads to a reduction in
porosity of compressible cakes and hence more resistant
cakes. Grace (28) presents filtration results for 17 tested
materials showing that the specific cake resistance
increases and the porosity decreases by increasing the
compressive pressure exerted on the particles from
0.07 bar to 186 bar. Tiller (29) shows the results of exper-
imentally determined values for the porosity of materials

FIG. 12. Simulated variation in the chord length distribution by varying

the first latent variable.

FIG. 13. Variation in the logarithm of the cake resistance (ln(a)¼ y) predicted from the chord length distributions presented in Figure 12. The other

variables are kept constant and equal to their mean values.

FIG. 14. Simulated variation in the chord length distribution by varying

the second latent variable.
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such as kaolin, calcium carbonate and asbestos, in
dependence of the applied solids compressible pressure
of up to 7 bar. From the obtained results he concludes
that the porosity can be satisfactorily related to the press-
ure by a power function. Both empirical models (13)

and mechanistic models (30–34) have been used in the
attempt to capture the characteristics of compressible
cakes. According to Wakeman and Tarleton (10) the solids
compressible pressure increases non-linearly from the cake
surface to the filter cloth as the hydraulic pressure is trans-
mitted by the liquid to the particles by friction and then
from particle to particle. As a consequence of the increase
in the solids compressible pressure towards the filter cloth,
Zogg (35,36) illustrates that compressible filter cakes
display an incompressible layer at the cake surface, but
are compressible to a higher extent as the distance from
the cake surface increases. These findings make it possible
to explain why the cake resistance significantly depends
(Fig. 5 and 6) on the applied pressure difference and
why the measured average porosity is far less significant.
It is proposed that the compression of layers close to
the filter medium leads to a low local porosity while the
average porosity is nearly unchanged. As a result, cake
resistance values are found to increase strongly with
the applied pressure difference. The dependency can be

FIG. 15. Variation in the logarithm of the cake resistance (ln(a)¼ y) predicted from the chord length distributions presented in Figure 14. The other

variables are kept constant and equal to their mean values.

FIG. 16. Simulated variation in the chord length distribution by varying

the third latent variable.

FIG. 17. Variation in the logarithm of the cake resistance (ln(a)¼ y) predicted from the chord length distributions presented in Figure 16. The other

variables are kept constant and equal to their mean values.
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expressed as a power function (10) which explains why a
logarithmic transformation of the measured cake resist-
ance values yielded a higher quality model (Fig. 6).
The strong local compression of the filter cake might
originate by different mechanisms. The observed spheru-
lites are susceptible to disintegration by breakage or age-
ing during the filtration process. Then, smaller plate-like
crystals arising during crystallization and filtration might
migrate into the deeper laying pores of the filter cake
(32,34). This is supported by the sensitivity analysis
which shows that broader chord length distributions
due to smaller particles give rise to higher cake resistance
values (Figs. 12–15 and 18–19). Finally, also the
rearrangement of the particles composing the cake can
lead to a compaction of the cake. The compressible
behavior of the investigated crystals is confirmed by
the pictures depicted in Fig. 20 where the surface of
the crystalline material is shown to be damaged
(Fig. 20a), and by the plate-like particles in Fig. 20b
originating from crystallization and filtration.

SUMMARY AND CONCLUSIONS

Partial least squares regression and sensitivity analysis
were used to study the influence of the measured chord
length distribution of different crystal suspensions, the
effect of the average cake porosity and the applied filtration
pressure difference on the average cake resistance of poly-
crystalline particles of an aromatic amine. Analysis of the
results has disclosed that wider chord length distributions
as well as lower values of the measured average porosity
lead to higher values for the average cake resistance. The
fact that lower average porosity leads to more resistant
cakes is in accordance with general filtration theory, partly
as a consequence of a wider particle size distribution. How-
ever, it has been shown that the applied pressure difference
itself plays a more significant role in explaining the
measured average cake resistance values than the measured
average porosity. The fact that an increase in the applied
pressure difference has a more significant influence on the
increase in the average cake resistance than could be
expected from the average porosity can be explained by cake
compression of the filter cake occurring predominantly

FIG. 18. Simulated variation in the chord length distribution by varying

the optimal combination of the four first latent variables, ðn1 n2 n3 n4Þ ¼
ð0:59 0:23 0:13 0:05Þ.

FIG. 19. Variation in the logarithm of the cake resistance (ln(a)¼ y) predicted from the chord length distributions presented in Figure 18. The other

variables are kept constant and equal to their mean values.

FIG. 20. Crystals produced at 60�C and S¼ 6 taken from the filter cake

after filtration at 2 bar: (a) shows the damaged surface of the particles and

(b) shows plate-like crystals that have arisen during the crystallization and

filtration process.
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close to the filter cloth. Cake compression above the filter
cloth leads to low local porosity which has previously been
reported for highly compressible cakes (37). Cake com-
pression is proposed to be effected by disintegration of
unstable polycrystalline particles forming the cake and by
invasion of smaller plate-like particles into deeper lying
pores of the filter cake. Hence, owing to high filter cake
resistances in the aromatic amine system associated with
the formation of unstable polycrystalline particles, such
particle morphologies should, if possible, be avoided in
industrial crystallization processes.
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NOMENCLATURE

a number of latent variables
A filter area, maximum number of latent variables,

number of PLS components for max explanation
of y, variable

b regression coefficient
bw weighted regression coefficient
c weight fraction of dissolved substance [g=g

solution], variable
c� solubility weight fraction [g=g solution]
E residual in X
F residual in Y
h cake height
i observation number, variable
Ipr number of validation objects
k variable number
K number of variables included in the PLS model
ms mass of dry solids
n optimal value for latent variables
p, P x variable loading
Q y variable loading
s standard deviation
smfs mass fraction of solids in the feed

[g=g suspension]
S supersaturation ratio
t filtration time
T temperature
T, t factor score in X
U factor score in Y
V filtrate volume
xecs effective concentration of solids [g=ml filtrate],

predictor variable
x predictor variable
�xx mean value of the predictor variable
X matrix of predictor variables
y observed variable

ŷ predicted value for the response (predicted
variable)

Y matrix of predicted variables

a average specific cake resistance [m=kg]
b filter medium resistance [1=m]
Dp pressure difference
E average cake porosity
g dynamic viscosity
ql filtrate density
qs density of solids

ATR Attenuated Total Reflectance
FBRM Focused Beam Reflectance Measurement
IR Infrared
PLS Partial Least Squares
SEM Scanning Electron Microscopy
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13. Häkkinen, A.; Pöllänen, K.; Reinikainen, S.-P.; Louhi-Kultanen, M.;

Nyström, L. (2008) Prediction of filtration characteristics by multi-

variate data analysis. Filtration, 8: 144.

14. Liotta, V.; Sabesan, V. (2004) Monitoring and feedback control

supersaturation using ATR FTIR to produce an active pharmaceuti-

cal ingredient of a desired crystal size. Organic Process Research &

Development, 8: 488.

15. Esbensen, K.H. (2002) Multivariate Data Analysis in Practice: An

Introduction to Multivariate Data Analysis and Experimental Design,

5th Ed.; Camo Process AS: Oslo, Norway.

16. Togkalidou, T.; Braatz, R.; Johnson, B.K.; Davison, O.; Andrews, A.

(2001) Experimental design and inferential modeling in pharmaceuti-

cal crystallization. AIChE Journal, 47: 160.

17. Høskuldsson, A. (1996) Prediction Methods in Science and Tech-

nology, vol. 1; Thor Publishing: Copenhagen, Denmark, p. 266.

ANALYSIS OF FILTRATION CHARACTERISTICS FOR COMPRESSIBLE POLYCRYSTALLINE PARTICLES 1207

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



18. Beck, R., Malthe-Sørenssen, D., Andreassen, J.P. (2009) Polycrystal-

line growth in precipitation of an aromatic amine derivative and

L-Glutamic Acid. Journal of Crystal Growth, 311: 320.

19. Ruf, A., Worlitschek, J., Mazzotti, M. (2000) Modeling and experi-

mental analysis of PSD measurements through FBRM. Particle &

Particle Systems Characterization, 17: 167.

20. Mota, M.; Teixeira, J.A.; Bowen, W.R.; Yelshin, A. (2003) Inter-

ference of coarse and fine particles of different shape in mixed porous

beds and filter cakes. Minerals Engineering, 16: 135.

21. Svarovsky, L. (2000) Solid-Liquid Separation, 4th Ed.; Butterworth-

Heinemann: Oxford, GB, UK.

22. Martens, H.; Martens, M. (2000) Modified Jack-knife estimation of

parameter uncertainty in bilinear modeling by partial least squares

regression (PLSR). Food quality and preference, 11: 5.

23. Svinning, K.; Datu, K.A. (2003) Prediction of microstructure and

properties of Portland cement from production conditions in cement

mill: Part II. Prediction and sensitivity analysis, 11th International

Congress on the Chemistry of Cement, Durban, South Africa.

24. Svinning, K. (2006) Design and manufacture of Portland cement –

application of sensitivity analysis in exploration and optimisation:

Part I: Exploration. Chemometrics and Intelligent Laboratory Systems,

84: 177.

25. Svinning, K.; Ingerøyen, Ø.; Dalsveen, K. (2000) Optimization of a

response variable y constrained by principal directions in variations

in the observation X-matrix. J. Chemometrics, 14: 699.

26. Svinning, K.; Høskuldsson, A. (2006) Design and manufacture of

Portland cement – application of sensitivity analysis in exploration

and optimization: Part II. Optimisation. Chemometrics and Intelligent

Laboratory Systems, 84: 188.

27. Nelder, J.A.; Mead, R. (1965) A simplex method for function minimi-

zation. Comput. J., 7: 308.

28. Grace, H.P. (1953) Resistance and compressibility of filter cakes,

Part I. Chemical Engineering Progress, 49: 303.

29. Tiller, F.M. (1953) The role of porosity in filtration, numerical meth-

ods for constant rate and constant pressure filtration based on

Kozeny’s Law. Chemical Engineering Progress, 49: 467.

30. Holdich, R.G. (1990) Solids concentration and pressure profiles

during compressible cake filtration. Chemical Engineering Communi-

cations, 91: 255.

31. Abboud, N.M., Corapcioglu, M.Y. (1993) Modeling of compressible

cake filtration. Journal of Colloid and Interface Science, 160: 304.

32. Lu, W.-M.; Huang, Y.-P.; Hwang, K.-J. (1998) Methods to determine

the relationship between cake properties and solid compressive

pressure. Separation & Purification Technology, 13: 9.

33. Tien, C.; Bai, R.; Ramarao, B.V. (1997) Analysis of cake growth in

cake filtration: Effect of fine particle retention. AICHE J., 43: 33.

34. Civan, F. (1998) Practical model for compressive cake filtration

including fine particle invasion. AIChE Journal, 44: 2388.

35. Zogg, M. (1979) Filtration mit kompressiblem Kuchen. Swiss Chem,

1: 27.

36. Zogg, M. (1980) Experimentelle Bestimmung der Filtrationsei-

genschaften kompressibler Filterkuchen. Swiss Chem, 2: 43.

37. Li, W., Tiller, F.M. (2004) Characterizing the super-compactibility of

wastewater filter cakes. Fluid=Particle Separation Journal, 16: 27.

1208 R. BECK ET AL.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1


